130 research outputs found

    Search for surviving companions in type Ia supernova remnants

    Full text link
    The nature of the progenitor systems of type~Ia supernovae is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions. Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- and helium-rich surviving companions, the color and magnitude of main-sequence- and helium-rich surviving companions are predicted as functions of time. The surviving companion candidates in Galactic type~Ia supernova remnants and nearby extragalactic type~Ia supernova remnants are discussed. We find that the maximum detectable distance of main-sequence surviving companions (helium-rich surviving companions) is 0.6−40.6-4~Mpc (0.4−160.4-16~Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for surviving companions. However, only five Ia~SNRs have been searched for surviving companions, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of type Ia supernovae, we encourage the search for surviving companions in other nearby type Ia supernova remnants.Comment: 25 pages, 5 figures, and 2 tables. Accepted for publication in Ap

    Masses and envelope binding energies of primary stars at the onset of a common envelope

    Get PDF
    We present basic properties of primary stars that initiate a common envelope (CE) in a binary, while on the giant branch. We use the population-synthesis code described in Politano et al. (2010) and follow the evolution of a population of binary stars up to the point where the primary fills its Roche lobe and initiates a CE. We then collect the properties of each system, in particular the donor mass and the binding energy of the donor's envelope, which are important for the treatment of a CE. We find that for most CEs, the donor mass is sufficiently low to define the core-envelope boundary reasonably well. We compute the envelope-structure parameter {\lambda_\mathrm{env}} from the binding energy and compare its distribution to typical assumptions that are made in population-synthesis codes. We conclude that {\lambda_\mathrm{env}} varies appreciably and that the assumption of a constant value for this parameter results in typical errors of 20--50%. In addition, such an assumption may well result in the implicit assumption of unintended and/or unphysical values for the CE parameter {\alpha_\mathrm{CE}}. Finally, we discuss accurate existing analytic fits for the envelope binding energy, which make these oversimplified assumptions for {\lambda_\mathrm{env}}, and the use of {\lambda_\mathrm{env}} in general, unnecessary.Comment: 6 pages, 3 figures, 1 table; to be published in the proceedings of the conference "Binary Star Evolution", in Mykonos, Greece, held in June 22-25, 201

    Simulations of the symbiotic recurrent nova V407 Cyg. I. Accretion and shock evolutions

    Full text link
    The shock interaction and evolution of nova ejecta with a wind from a red giant star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the March 2010 outburst of the symbiotic recurrent nova V407~Cygni from the quiescent phase to its eruption phase. The circumstellar density enhancement due to wind-white dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the red giant wind speed. Unlike another recurrent nova, RS~Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe an aspherical density distribution with ∼20%\sim 20\% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the red giant mass loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the red giant wind generates strong Rayleigh-Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. The ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100−300\sim 100-300 km-s−1^{-1}, depending on model, which is consistent with the observed extended redward emission in [N~II] lines in April 2011.Comment: ApJ, In Press. Simulation Animation: https://youtu.be/g5Nu7vDfCO
    • …
    corecore